1 前言
在20世纪80年代走入低谷,并经过不断发展进步之后,脉冲袋式除尘技术在近十几年中以其全新的面貌和良好的技术经济指标,逐渐成为烟气净化和工业除尘工程中的首选袋式除尘设备。关心这一技术的人们,围绕设计和应用提出了许多问题。对这些问题的深入了解,有利于脉冲袋式除尘技术的正确应用,可能避免或减少工程实践中出现技术和经济方面的失误。因此,拟借此文就有关问题与同行探讨。
2脉冲袋式除尘器的清灰机理衡量指标
(1) 脉冲喷吹清灰的实际过程可以描述为:在脉冲喷吹时,清灰气流使滤袋内的压力急速上升,滤袋迅速向外膨胀,当袋壁膨胀到限位置时,很大的张力使其受到强烈的冲击振动,并获得大反向加 速度从而开始向内收缩;但附着在滤袋表面的粉尘层不受张力作用,由于惯性力的作用而从滤袋上脱落。
(2) 袋壁的大反向加速度与清灰效果是一致的,就是说,大反向加速度越高,清灰效果就越好。
(3) 在研究脉冲袋式除尘器清灰机理的过程中,一些学者曾认为机械振打袋式除尘器的几种清灰机理(诸如加速度、剪切、屈曲-拉伸、扭曲和逆向气流等),也是脉冲袋式除尘器的清灰机理。目前,绝大 多数研究者认为滤袋在喷吹时膨胀到限位置时的大反向加速度起主要作用,而另一些学者则认为喷吹时逆向穿过滤袋的气流对清灰起作用。
为了研究逆向气流的清灰作用,一些学者进行了有益的试验。结果证明,逆向气流要将尘粒从除尘滤袋表面吹落,其速度至少需要10~20m/s;粒子越小,其粘附力对拉力的比值越大,越难吹落,因而需 要更高风速。
实际情况下,脉冲袋式除尘器清灰时逆向气流远远达不到上述速度:一位研究者估算,脉冲喷吹时的逆向气流平均速度为150mm/s,无论无何也不会大过610mm/s;而另外两位研究者在实验室测得的逆向气流速度仅30~50mm/s。由此可以认为,在脉冲喷吹时,逆向气流对粉尘剥离所起作用非常小,粉尘从滤袋表面的脱落都是由于滤袋面运动的结果。
一项试验支持了上述观点。研究者将袋笼的直径稍微缩小,并在袋笼上楔入圆棒来缩小滤袋与袋笼之间的空隙,同时尽量保持气脉冲的恒定,以使逆向气流不发生大的变化。结果表明,在逆向气流不变的条件下,通过限制滤袋壁面的运动,清灰后的剩余压差显著增加了。工程应用的脉冲袋式除尘器,也曾发现由于滤袋在袋笼上绷得过紧而清灰不良的情况,而此时脉冲喷吹的逆向气流并末减少,只是滤袋被绷紧后袋壁的运动大大受限,因而其膨胀到限位置时受到的冲击振动大为减弱。
至于反吹清灰袋式除尘器,由于逆向气流的速度更小,通常只有16~30mm/s,所以更难以将粉尘从滤袋表面吹落。
(4) 国内研究者的结论与上述相同。实际上,脉冲喷吹清灰同爆破过程有相似之处。除了大反向加速度外,清灰时滤袋内的压力峰值和压力上升速度也是衡量清灰效果重要指标。
(5) 以滤袋内的压力峰值、压力上升速度和滤袋壁的大反向加速度这三项指标衡量清灰效果,不仅适用于脉冲袋式除尘器,也适用于反吹清灰的袋式除尘器。
图1是菱形扁袋式除尘器清灰时滤袋的压力和加速度波形。可以看出,不但压力峰值低(仅55Pa),而且压力上升速度特别小(0.85Pa/ms),只有脉冲喷吹(294.93Pa/ms)的2.88‰,其大反向加速度基本为零。这与该类除尘器在实际运行中清灰效果不佳、阻力偏高的情况完全吻合。
(1)脉冲喷吹装置有“管式”和“箱式”喷吹两种形式。
前者是在每排滤袋上方设喷吹管,通过管上的喷嘴向滤袋内输送清灰气流。喷嘴孔径各不相同,可确保各条滤袋清灰强度均匀。
后者则不设喷吹管,清灰气流喷入上箱体并使之增压,进而将能量传递至滤袋以实现清灰。
(2)对箱式脉冲喷吹的试验表明,处于不同部位的各条滤袋之间,清灰强度存在较大差异。
试验对象是一种带有集中引射器的喷吹装置,每排12条滤袋。当引射器出口距条滤袋中心线110mm时,首、末两端滤袋的袋底压力峰值之比为1比4.94~13.44(表3)。将引射器位置移向远处,此种差距可以缩小,当其出口距条滤袋中心线470mm时,上述比值为1:(1.93~2.20)。即使如此,位置靠前的滤袋仍嫌清灰能力不足,而且给整体结构增加了困难。
(3)实际应用的箱式喷吹袋式除尘器还存在以下不足之处:压气耗量较大;滤袋长度受到限制;清灰效果对停风(离线)阀的气密性依赖较大。
(4 )箱式喷吹的优点是换袋操作省去了拆、装喷吹管的工序。
(5)综上所述,在清灰效果、耗气量、滤袋长度等长期起作用的因素方面,箱式喷吹存在着明显的缺点;而其换袋操作更简便的优点,只在一年至数年才出现一次的换袋时体现出来。因此,采用管式喷吹更为合理。
表3 箱式喷吹装置的清灰性能
序 号引射器出口与条滤袋的距离/mm袋底压力峰值/Pa